
13 - 15 June 2001 ROOT 2001 FNAL 1

What Else is New Since
ROOT 2000?

Fons Rademakers

13 - 15 June 2001 ROOT 2001 FNAL 2

New Build System

n Move from CMZ to well known Open
Source tools like CVS and (g)make

n To build ROOT on any platform do:
n ./configure <platform>; make; make install

n We don’t use autoconf and automake
since most platform ifdef’s were already in
the source, and we already had figured
out how to build shared libs on all
platforms, but the idea is the same

13 - 15 June 2001 ROOT 2001 FNAL 3

Makefile Structure

n The ROOT Makefile has been structured as
described in the paper: "Recursive Make
Considered Harmful“
n http://www.tip.net.au/~millerp/rmch/recu-make-cons-harm.html

n The main philosophy is that it is better to have a
single large Makefile describing the entire
project than many small Makefiles, one for each
sub-project, that are recursively called from the
main Makefile. By cleverly using the include
mechanism the single Makefile solution is as
modular as the recursive approach without the
problems of incomplete dependency graphs.

13 - 15 June 2001 ROOT 2001 FNAL 4

Makefile Features

n The single Makefile is FAST
n about 1 sec to check if anything needs to be

recompiled

n The Makefile supports parallel builds
n make –j 24 on FermiLab’s SGI’s

n The ROOTBUILD shell variable can be
used to steer build
n export ROOTBUILD=debug

13 - 15 June 2001 ROOT 2001 FNAL 5

Important Makefile Targets
n make all (default)
n make install (install to path specified in ./configure)
n make dist (binary tar.gz distribution)
n make redhat (build binary rpm, by Christian Holm)
n make debian (build binary pkg, by Christian Holm)
n make distsrc (source tar.gz)
n make distclean (clean everything except configure info)
n make maintainer-clean (distclean + remove configure info)
n make cintdlls (build all CINT add-on dll’s)
n make html (generate HTML documentation of classes)

n make all-<module> (builds everything for specified module)
n make distclean-<module> (clean everything for specified module)

13 - 15 June 2001 ROOT 2001 FNAL 6

LXR Based CVS Web Interface

n CVS repository cross referenced and
browsable/searchable via Web:
n http://root.cern.ch/lxr (accessable via the

“Reference Guide” link on the home page)
n Regenerated every 6 hours

13 - 15 June 2001 ROOT 2001 FNAL 7

New ROOT GUI Widgets

n Simple text editor: TGTextEditor

13 - 15 June 2001 ROOT 2001 FNAL 8

New ROOT GUI Widgets

n Window splitter: TGSplitter

13 - 15 June 2001 ROOT 2001 FNAL 9

New ROOT GUI Widgets

n Progress bars: TGProgressBar

13 - 15 June 2001 ROOT 2001 FNAL 10

New ROOT GUI Widgets

n Table layout: TGTableLayout
n By Brett Viren

13 - 15 June 2001 ROOT 2001 FNAL 11

New ROOT GUI Widgets

n Image map: TGImageMap
n By Valeriy Onuchin

13 - 15 June 2001 ROOT 2001 FNAL 12

New ROOT GUI Widgets

n Shutter box: TGShutter

13 - 15 June 2001 ROOT 2001 FNAL 13

Signals and Slots
by Valeriy Onchin

n Integration of signal and slot mechanism
into the ROOT core
n TQObject, TQConnection, TQClass, …

n Signal and slots were pioneered by
Trolltech in their Qt GUI toolkit

n This mechanism facilitates component
programming since it allows a total
decoupling of the interacting classes

13 - 15 June 2001 ROOT 2001 FNAL 14

Signals and Slots Example:
Emitting a Signal

class A : public TQObject{

private:

Int_t fValue;

public:

A() { fValue = 0; }

Int_t GetValue() const { return fValue; }

void SetValue(Int_t); //*SIGNAL*

};

class A {

RQ_OBJECT()

private:

Int_t fValue;

public:

A() { fValue = 0; }

Int_t GetValue() const { return fValue; }

void SetValue(Int_t); //*SIGNAL*

};

13 - 15 June 2001 ROOT 2001 FNAL 15

Signals and Slots Example:
Emitting a Signal

void A::SetValue(Int_t v)
{

if (v != fValue) {
fValue = v;
Emit("SetValue(Int_t)", v);

}
}

void TGButton::Clicked()
{

Emit(“Clicked()");
}

13 - 15 June 2001 ROOT 2001 FNAL 16

Signals and Slots Example:
Connecting a Signal to a Slot

A *a = new A();

A *b = new A();

a->Connect("SetValue(Int_t)", "A", b, "SetValue(Int_t)");

a->SetValue(79);

b->GetValue(); // this would is now 79

fButton->Connect("Clicked()", "MyFrame", this, "DoButton()");

13 - 15 June 2001 ROOT 2001 FNAL 17

Signals and Slots

n The ROOT signal and slot system uses the
dictionary information and interpreter to
connect signals to slots

n Signals are emitted by:
n TVirtualPad (TCanvas and TPad)
n TSysEvtHandler (TTimer, TFileHandler)
n All GUI widgets

n Let your classes emit signals whenever
they change a significant state that others
might be interested in

13 - 15 June 2001 ROOT 2001 FNAL 18

More RDBMS Interfaces

n In addition to original MySQL interface:
n Oracle

by Michael Dahlinger of GSI
http://www.gsi.de/computing/root/OracleAccess.htm

n PostgreSQL
by Gian Paolo Ciceri

n RDBC, a version of JDBC on top of ODBC
by Valeriy Onuchin (see talk on Thursday morning)

13 - 15 June 2001 ROOT 2001 FNAL 19

OpenInventor Integration

n Basic interface by Valery Fine
n Problems: two event loops, ROOT and Xt
n Merging of Xt in ROOT event loop:

n dispatch events for Xt managed windows
n let Xt check and process its timers

n See TRootOIViewer class
n Same technique can be used to embed a

Motif based application in ROOT

13 - 15 June 2001 ROOT 2001 FNAL 20

OpenInventor Interface

n To get OpenInventor interface:
n Install Open Inventor (set env var IVROOT)

(http://oss.sgi.com/projects/inventor/)

n Re-make ROOT (triggers on IVROOT)
n Activate via TCanvas “View with OpenGL”

13 - 15 June 2001 ROOT 2001 FNAL 21

New Networking Classes

n Parallel socket classes (TPSocket and
TPServerSocket)
n Message striping over multiple sockets

n Parallel ftp class (TFTP)
n Parallel remote file access using parallel

version of TNetFile and rootd
n More on these classes in my Friday

morning talk

13 - 15 June 2001 ROOT 2001 FNAL 22

The PROOF System

n Parallel ROOT Facility, goal:
n parallel execution of scripts
n parallel analysis of chains of trees

n Further infrastructure developments of the
PROOF system
n config file structure, proof daemons,

authentication, client -> master -> slaves
communication, etc.

n For more see my Friday morning talk

